Cyclotides stand out as the largest family of circular proteins of plant origin hitherto known, with more than 280 sequences isolated at peptide level and many more predicted from gene sequences. Their unusual stability resulting from the signature cyclic cystine knot (CCK) motif has triggered a broad interest in these molecules for potential therapeutic and agricultural applications. Since the time of the first cyclotide discovery, our laboratory in Uppsala has been engaged in cyclotide discovery as well as the development of protocols to isolate and characterize these seamless peptides. We have also developed methods to chemically synthesize cyclotides by Fmoc-SPPS, which are useful in protein grafting applications. In this review, experience in cyclotide research over two decades and the recent literature related to their structures, synthesis, and folding as well the recent proof-of-concept findings on their use as "epitope" stabilizing scaffolds are summarized.