Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K(+)-efflux and Ca(2+)-influx in Arabidopsis roots. Pre-treatment with either 10μM cAMP or cGMP for 1 or 24h does significantly reduce net K(+)-leakage and Ca(2+)-influx, and in the case of the K(+)-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10μM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2.
Keywords: Arabidopsis thaliana; Cyclic mononucleotide; Hydrogen peroxide; Ion flux; Plant stress; Proteomic; cAMP; cGMP.
Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.