Introduction: The insulin-regulated aminopeptidase (IRAP) is expressed in several cell types, where it is mainly located in specialized secretory endosomes that are quickly recruited to the cell surface upon cell type-specific activation. Here we describe for the first time the expression and subcellular distribution of IRAP in macrophages.
Methods: IRAP mRNA expression, protein expression and presence at the cell surface was investigated by real-time polymerase chain reaction (PCR), Western blot and [(3)H]IVDE77 binding, respectively.
Results: IRAP mRNA expression was increased by interferon-γ (IFN-γ) and lipopolysaccharide (LPS), but not by anti-inflammatory cytokines (interleukin (IL)-4, IL-10, transforming growth factor β (TGF-β)). IFN-γ increased [(3)H]IVDE77 binding steadily over time, while LPS quickly and transiently recruited IRAP to the cell surface. Combined stimulations with IFN-γ and LPS showed the same pattern as LPS alone. Latex particles also induced a transient recruitment of IRAP to the cell surface, but no difference was observed in phagocytic uptake between wild-type and IRAP(-/-) macrophages, suggesting that the enzymatic activity of IRAP is not required for the ingestion of particles.
Conclusion: IRAP is more highly expressed in pro-inflammatory M1-activated macrophages and its presence at the cell surface is modulated upon exposure to IFN-γ, LPS or exogenous particles.
Keywords: Angiotensin IV; IVDE77; M1; insulin-regulated aminopeptidase; macrophage.
© The Author(s) 2013.