Clinically, diabetes mellitus is closely associated with and induces certain cardiovascular diseases. The aim of this study was to investigate endoplasmic reticulum (ER) stress-associated apoptosis of diabetic cardiomyopathy (DCM), and explore the protective mechanism of liraglutide. The DCM model was established with a high-fat diet and streptozotocin (STZ). Cardiac function was detected by echocardiogram examination and hematoxylin-eosin staining. ER stress unfolded protein response (UPR) hallmarks [inositol-requiring enzyme-α (IRE-α), p-Perk and ATF6] and transcription factors were detected with western blotting. Apoptosis inducers CHOP, c-Jun amino terminal kinase (JNK) and casapse-12 were also examined with western blotting. The results indicated that liraglutide is capable of improving cardiac function in DCM rats (P<0.05). IRE-α expression was significantly increased in the DCM group compared with the control group (P<0.05), and liraglutide is capable of decreasing IRE-α expression. X-box transcription factor-1 (XBP-1) was significantly spliced in the model group, and downregulated in the liraglutide-treated group. CHOP protein was upregulated in the DCM group, but inactivated by liraglutide treatment. In conclusion, liraglutide is capable of protecting DCM and blocking CHOP-mediated ER stress by inhibiting the IRE-α UPR pathway.