The seemingly straightforward task of analysing faecal egg counts resulting from laboratory procedures such as the McMaster technique has, in reality, a number of complexities. These include Poisson errors in the counting technique which result from eggs being randomly distributed in well mixed faecal samples. In addition, counts between animals in a single experimental or observational group are nearly always over-dispersed. We describe the R package "eggCounts" that we have developed that incorporates both sampling error and over-dispersion between animals to calculate the true egg counts in samples of faeces, the probability distribution of the true counts and summary statistics such as the 95% uncertainty intervals. Based on a hierarchical Bayesian framework, the software will also rigorously estimate the percentage reduction of faecal egg counts and the 95% uncertainty intervals of data generated by a faecal egg count reduction test. We have also developed a user friendly web interface that can be used by those with limited knowledge of the R statistical computing environment. We illustrate the package with three simulated data sets of faecal egg count reduction experiments.
Keywords: Anthelmintic resistance; Bayesian hierarchical model; Faecal egg count reduction test; Mathematical techniques; Statistical analysis.
Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.