Rationale: Studies demonstrating early structural lung damage in infants and preschool children with cystic fibrosis (CF) suggest that noninvasive monitoring will be important to identify patients who may benefit from early therapeutic intervention. Previous studies demonstrated that magnetic resonance imaging (MRI) detects structural and functional abnormalities in lungs from older patients with CF without radiation exposure.
Objectives: To evaluate the potential of MRI to detect abnormal lung structure and perfusion in infants and preschool children with CF, and to monitor the response to therapy for pulmonary exacerbation.
Methods: MRI studies were performed in 50 children with CF (age, 3.1 ± 2.1 yr; range, 0-6 yr) in stable clinical condition (n = 40) or pulmonary exacerbation before and after antibiotic treatment (n = 10), and in 26 non-CF control subjects (age, 2.9 ± 1.9 yr). T1- and T2-weighted sequences before and after intravenous contrast and first-pass perfusion imaging were acquired, and assessed on the basis of a dedicated morphofunctional score.
Measurements and main results: MRI demonstrated bronchial wall thickening/bronchiectasis, mucus plugging, and perfusion deficits from the first year of life in most stable patients with CF (global score, 10.0 ± 4.0), but not in non-CF control subjects (score, 0.0 ± 0.0; P < 0.001). In patients with exacerbations, the global MRI score was increased to 18.0 ± 2.0 (P < 0.001), and was significantly reduced to 12.0 ± 3.0 (P < 0.05) after antibiotic therapy.
Conclusions: MRI detected abnormalities in lung structure and perfusion, and response to therapy for exacerbations in infants and preschool children with CF. These results support the development of MRI for noninvasive monitoring and as an end point in interventional trials for early CF lung disease. Clinical trial registered with www.clinicaltrials.gov (NCT00760071).