Stimulus-evoked theta oscillations are observed in the medial prefrontal cortex (mPFC) when executing a variety of learning tasks. Here, we aimed to further determine whether spontaneous theta-band (5.0-10.0 Hz) oscillations in the mPFC predicted the subsequent behavioral performance in trace eyeblink conditioning (TEBC), in which the conditioned stimulus (CS) was separated from the unconditioned stimulus (US) by 500 ms trace interval. By recording local field potentials (LFP) signals in the guinea pigs performing the TEBC task, we found that, a higher mPFC relative theta ratio [theta/(delta+beta)] during the baseline (850-ms period prior to the onset of the CS) was predictive of higher magnitude and more adaptive timing rather than faster acquisition of trace conditioned eyeblink responses (CR). However, the prediction of baseline mPFC theta activity was time-limited to the well-learning stage. Additionally, the relative power of mPFC theta activity did not correlate with the CR performance if the trace interval between the CS and the US was shortened to 100 ms. These results suggest that the brain state in which the baseline mPFC theta activity is present or absent is detrimental for the subsequent performance of trace CRs especially when the asymptotic learning state is achieved.
Keywords: Eyeblink; Guinea pig; Medial prefrontal cortex; Theta oscillation; Trace conditioning.
Copyright © 2014 Elsevier B.V. All rights reserved.