Incremental learning with selective memory (ILSM): towards fast prostate localization for image guided radiotherapy

Med Image Comput Comput Assist Interv. 2013;16(Pt 2):378-86. doi: 10.1007/978-3-642-40763-5_47.

Abstract

Image-guided radiotherapy (IGRT) requires fast and accurate localization of prostate in treatment CTs, which is challenging due to low tissue contrast and large anatomical variations across patients. On the other hand, in IGRT workflow, a series of CT images is acquired from the same patient under treatment, which contains valuable patient-specific information yet is often neglected by previous works. In this paper, we propose a novel learning framework, namely incremental learning with selective memory (ILSM), to effectively learn the patient-specific appearance characteristics from these patient-specific images. Specifically, starting with a population-based discriminative appearance model, ILSM aims to "personalize" the model to fit patient-specific appearance characteristics. Particularly, the model is personalized with two steps, backward pruning that discards obsolete population-based knowledge, and forward learning that incorporates patient-specific characteristics. By effectively combining the patient-specific characteristics with the general population statistics, the incrementally learned appearance model can localize the prostate of the specific patient much more accurately. Validated on a large dataset (349 CT scans), our method achieved high localization accuracy (DSC approximately 0.87) in 4 seconds.

MeSH terms

  • Algorithms
  • Artificial Intelligence*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Male
  • Pattern Recognition, Automated / methods*
  • Prostatic Neoplasms / diagnostic imaging*
  • Prostatic Neoplasms / radiotherapy*
  • Radiography
  • Radiotherapy, Conformal / methods*
  • Radiotherapy, Image-Guided / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity