Role of antiferromagnetic ordering in the (1×2) surface reconstruction of Ca(Fe(1-x)Co(x))2As2

Phys Rev Lett. 2014 Feb 21;112(7):077205. doi: 10.1103/PhysRevLett.112.077205. Epub 2014 Feb 20.

Abstract

Low energy electron diffraction, scanning tunneling microscopy and spectroscopy, and first-principles spin-dependent density functional theory are utilized to investigate the geometric, electronic, and magnetic structures of the stripe-ordered (1×2) surface of Ca(Fe1-xCox)2As2 (x=0, 0.075). The surface is terminated with a 50% Ca layer. Compared to the bulk, the surface Ca layer has a large inward relaxation (∼0.5 Å), and the underneath As-Fe2-As layer displays a significant buckling. First-principles calculations show that the (1×2) phase is stabilized by the bulk antiferromagnetic spin ordering through the spin-charge-lattice coupling. Strikingly, a superconducting gap (∼7 meV at 7.4 K) is observed to spatially coexist with the (1×2) phase (x=0.075 compound). This implies the coexistence of both superconductivity and AFM ordering at the surface.