The role of surface and deep-level defects on the emission of tin oxide quantum dots

Nanotechnology. 2014 Apr 4;25(13):135701. doi: 10.1088/0957-4484/25/13/135701. Epub 2014 Feb 28.

Abstract

This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO₂ QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO₂ phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO₂ QDs is discussed with the help of an energy band diagram.

Publication types

  • Research Support, Non-U.S. Gov't