Goals: To evaluate the usefulness of a newly devised computer system for use with laser-based endoscopy in differentiating between early gastric cancer, reddened lesions, and surrounding tissue.
Background: Narrow-band imaging based on laser light illumination has come into recent use. We devised a support vector machine (SVM)-based analysis system to be used with the newly devised endoscopy system to quantitatively identify gastric cancer on images obtained by magnifying endoscopy with blue-laser imaging (BLI). We evaluated the usefulness of the computer system in combination with the new endoscopy system.
Study: We evaluated the system as applied to 100 consecutive early gastric cancers in 95 patients examined by BLI magnification at Hiroshima University Hospital. We produced a set of images from the 100 early gastric cancers; 40 flat or slightly depressed, small, reddened lesions; and surrounding tissues, and we attempted to identify gastric cancer, reddened lesions, and surrounding tissue quantitatively.
Results: The average SVM output value was 0.846 ± 0.220 for cancerous lesions, 0.381 ± 0.349 for reddened lesions, and 0.219 ± 0.277 for surrounding tissue, with the SVM output value for cancerous lesions being significantly greater than that for reddened lesions or surrounding tissue. The average SVM output value for differentiated-type cancer was 0.840 ± 0.207 and for undifferentiated-type cancer was 0.865 ± 0.259.
Conclusions: Although further development is needed, we conclude that our computer-based analysis system used with BLI will identify gastric cancers quantitatively.