Inelastic neutron scattering analysis of picosecond internal protein dynamics. Comparison of harmonic theory with experiment

J Mol Biol. 1988 Aug 20;202(4):903-8. doi: 10.1016/0022-2836(88)90566-9.

Abstract

The experimental inelastic neutron scattering spectrum of a protein, the bovine pancreatic trypsin inhibitor (BPTI), in a powder sample is presented together with the generalized density of states, G(omega), as a function of the frequency, omega, derived from the scattering data. The experimental results are compared with calculations from two different normal mode analyses of BPTI. One of these, based on an improved model, gives a calculated spectrum and density of states in general agreement with those obtained experimentally; the other, based on an earlier model, shows considerable disagreement. The important improvements in the newer normal mode analysis are the explicit treatment of all atoms (non-polar as well as polar hydrogens are included) and a modified truncation scheme for the long-range electrostatic interactions. The fact that the inelastic neutron scattering measurements can distinguish between the two theoretical models makes clear their utility for the analysis of protein dynamics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Aprotinin*
  • Cattle
  • Neutrons
  • Scattering, Radiation

Substances

  • Aprotinin