Hereditary Haemorrhagic Telangiectasia (HHT) is an autosomal dominantly inherited vascular disease characterized by the presence of mucocutaneous telangiectasia and arteriovenous malformations in visceral organs. HHT is predominantly caused by mutations in ENG and ACVRL1, which both belong to the TGF-β signalling pathway. The exact mechanism of how haploinsufficiency of ENG and ACVRL1 leads to HHT manifestations remains to be identified. As long non-coding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression and constitute a sizable fraction of the human transcriptome, we wanted to assess whether lncRNAs play a role in the molecular pathogenesis of HHT manifestations. By microarray technology, we profiled lncRNA transcripts from HHT nasal telangiectasial and non-telangiectasial tissue using a paired design. The microarray probes were annotated using the GENCODE v.16 dataset, identifying 4,810 probes mapping to 2,811 lncRNAs. Comparing HHT telangiectasial tissue with HHT non-telangiectasial tissue, we identified 42 lncRNAs that are differentially expressed (q<0.001). Using GREAT, a tool that assumes cis-regulation, we showed that differently expressed lncRNAs are enriched for genomic loci involved in key pathways concerning HHT. Our study identified lncRNAs that are aberrantly expressed in HHT telangiectasia and indicates that lncRNAs may contribute to regulate protein-coding loci in HHT. These results suggest that the lncRNA component of the transcriptome deserves more attention in HHT. A deeper understanding of lncRNAs and their role in telangiectasia formation possesses potential for discovering therapeutic targets in HHT.