Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: a pilot study in healthy subjects

Genes Nutr. 2014 May;9(3):390. doi: 10.1007/s12263-014-0390-x. Epub 2014 Mar 7.

Abstract

In order to study the effects of vitamin C supplementation on gene expression and compare its action between physiological and inflammatory conditions, a pilot study was set up utilizing microarray and qPCR technologies. Five healthy volunteers were supplemented with 1 g vitamin C (Redoxon(®)) per day for five consecutive days. Peripheral blood mononuclear cells (PBMNC) were isolated before and just after the last supplementation, and RNA was isolated for the Affymetrix gene 1.0 ST chip analysis. PBMNC were also, ex vivo, treated with LPS, and gene expression was quantified by means of a "Human NFkB Signaling" qPCR array. Only a very moderate effect on the baseline gene expression modulation was associated with vitamin C supplementation. However, in spite of the limited number of subjects analyzed, vitamin C supplementation resulted in a markedly different modulation of gene expression upon the inflammatory stimulus, specifically at the level of the MyD88-dependent pathway and of the anti-inflammatory cytokine IL-10 synthesis. This study suggests that vitamin C supplementation in healthy subjects, not selected according to a specific genetic profile, consuming an adequate amount of vitamin C, and having a satisfactory vitamin C plasma concentration at the baseline, does not result in a significant modification of gene expression profile. Under this satisfactory micronutrient status, supplementation of vitamin C is "buffered" within a homeostatic physiological equilibrium. Differently, following a second "hit" constituted of an inflammatory stimulus such as LPS, able to trigger a critical burst to the normal physiological state, the higher availability of ascorbic acid emerges, and results in a significant modulation of cell response.