Radiosensitization of malignant gliomas following intracranial delivery of paclitaxel biodegradable polymer microspheres

J Neurosurg. 2014 May;120(5):1078-85. doi: 10.3171/2014.1.JNS13235. Epub 2014 Mar 7.

Abstract

Object: The aim of this study was to demonstrate that paclitaxel could function as a radiosensitizer for malignant glioma in vitro and in vivo.

Methods: The radiosensitizing effect of paclitaxel was tested in vitro using the human U373MG and rat 9L glioma cell lines. Cell cycle arrest in response to paclitaxel exposure was quantified by flow cytometry. Cells were subsequently irradiated, and toxicity was measured using the clonogenic assay. In vivo studies were performed in Fischer 344 rats implanted with intracranial 9L gliosarcoma. Rats were treated with control polymer implants, paclitaxel controlled-release polymers, radiotherapy, or a combination of the 2 treatments. The study end point was survival.

Results: Flow cytometry demonstrated G2-M arrest in both U373MG and 9L cells following 6-12 hours of paclitaxel exposure. The order in which the combination treatment was administered was significant. Exposure to radiation treatment (XRT) during the 6-12 hours after paclitaxel treatment resulted in a synergistic reduction in colony formation. This effect was greater than the effect from either treatment alone and was also greater than the effect of radiation exposure followed by paclitaxel. Rats bearing 9L gliosarcoma tumors treated with paclitaxel polymer administration followed by single-fraction radiotherapy demonstrated a synergistic improvement in survival compared with any other treatment, including radiotherapy followed by paclitaxel treatment. Median survival for control animals was 13 days; for those treated with paclitaxel alone, 21 days; for those treated with XRT alone, 21 days; for those treated with XRT followed by paclitaxel, 45 days; and for those treated with paclitaxel followed by XRT, more than 150 days (p < 0.0001).

Conclusions: These results indicate that paclitaxel is an effective radiosensitizer for malignant gliomas because it renders glioma cells more sensitive to ionizing radiation by causing G2-M arrest, and induces a synergistic response to chemoradiotherapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents, Phytogenic / administration & dosage
  • Antineoplastic Agents, Phytogenic / therapeutic use*
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / pathology
  • Brain Neoplasms / radiotherapy
  • Cell Line, Tumor
  • Combined Modality Therapy
  • Drug Delivery Systems
  • Glioma / drug therapy*
  • Glioma / pathology
  • Glioma / radiotherapy
  • Humans
  • Microspheres
  • Neoplasm Transplantation
  • Paclitaxel / administration & dosage
  • Paclitaxel / therapeutic use*
  • Radiation-Sensitizing Agents / administration & dosage
  • Radiation-Sensitizing Agents / therapeutic use*
  • Rats
  • Rats, Inbred F344

Substances

  • Antineoplastic Agents, Phytogenic
  • Radiation-Sensitizing Agents
  • Paclitaxel