Three-dimensional self-assembly of networked branched TiO₂ nanocrystal scaffolds for efficient room-temperature processed depleted bulk heterojunction solar cells

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):5026-33. doi: 10.1021/am500110x. Epub 2014 Mar 18.

Abstract

In this work, we report on ∼4% power conversion efficiency (PCE) depleted bulk heterojunction (DBH) solar cells based on a high-quality electrode with a three-dimensional nanoscale architecture purposely designed so as to maximize light absorption and charge collection. The newly conceived architecture comprises a mesoporous electron-collecting film made of networked anisotropic metal-oxide nanostructures, which accommodates visible-to-infrared light harvesting quantum dots within the recessed regions of its volume. The three-dimensional electrodes were self-assembled by spin-coating a solution of colloidal branched anatase TiO2 NCs (BNC), followed by photocatalytic removal of the native organic capping from their surface by a mild UV-light treatment and filling with small PbS NCs via infiltration. The PCE ∼ 4% of our TiO2 BNC/PbS QD DBH solar cell features an enhancement of 84% over the performance obtained for a planar device fabricated under the same conditions. Overall, the DBH device fabrication procedure is entirely carried out under mild processing conditions at room temperature, thus holding promise for low-cost and large-scale manufacturing.

Publication types

  • Research Support, Non-U.S. Gov't