The combination of extracorporeal carbon dioxide removal (ECCO2R) and hemofiltration is a possible therapeutic strategy for patients needing both lung and renal support. We tested the effects of the recirculation of ultrafiltrate on membrane lung (ML) CO2 removal (VCO2ML). Three conscious, spontaneously breathing sheep were connected to a commercially produced ECCO2R device (Hemolung; Alung Technologies, Pittsburgh, PA) with a blood flow of 250 ml/min and a gas flow of 10 L/min. A hemofilter (NxStage, NxStage Medical, Lawrence, MA) was interposed in series after the ML. Ultrafiltrate flow was generated and recirculated before the ML. We tested four ultrafiltrate flows (0, 50, 100, and 150 ml/min) for 25 min each, eight times per animal, resulting in 24 randomized test repetitions. We recorded VCO2ML, hemodynamics and ventilatory variables, and natural lung CO2 transfer (VCO2NL) and collected arterial and circuitry blood samples. VCO2ML was unchanged by application of ultrafiltrate recirculation (40.5 ± 4.0, 39.7 ± 4.2, 39.8 ± 4.2, and 39.2 ± 4.1 ml/min, respectively, at ultrafiltrate flow of 0, 50, 100, and 150 ml/min). Minute ventilation, respiratory rate, VCO2NL, and arterial blood analyses were not affected by ultrafiltrate recirculation. In the tested configuration, ultrafiltrate recirculation did not affect VCO2ML. This modular technology may provide a suitable platform for coupling CO2 removal with various forms of blood purification.