The binding region for human immunodeficiency virus (HIV) and epitopes for a panel of HIV-blocking anti-CD4 monoclonal antibodies of the CD4 molecule were defined by using in vitro site-directed mutagenesis. Codons for two amino acid residues (Ser-Arg) were inserted at selected positions within the region encoding the first and second immunoglobulin-like domains of CD4. A vaccinia virus-based expression system was used to produce soluble full-length extracellular CD4 fragments containing the insertions. The mutant proteins were tested for direct binding to soluble gp120 (the CD4-binding subunit of the viral envelope glycoprotein) and to a series of HIV-blocking anti-CD4 monoclonal antibodies. Impaired gp120 binding activity resulted from insertions after amino acid residues 31, 44, 48, 52, 55, and 57 in the first immunoglobulin-like domain. The epitopes for two HIV-blocking monoclonal antibodies, OKT4A and OKT4D, were also mapped in the gp120-binding region in the first domain. Insertions after amino acid residues 21 and 91 in the first domain had no effect on gp120 binding but impaired the binding of OKT4E, suggesting that this antibody recognizes a discontinuous epitope not directly involved in gp120 binding. Moderate impairment of gp120 binding resulted from the insertion after amino acid residues 164 in the second immunoglobulin-like domain, where the epitopes for monoclonal antibodies MT151 and OKT4B were also mapped.