Application of anode-supported solid oxide fuel cell (SOFC) with ceria based electrolyte has often been limited by high cost of electrolyte film fabrication and high electrode polarization. In this study, dense Gd0.1Ce0.9O2 (GDC) thin film electrolytes have been fabricated on hierarchically oriented macroporous NiO-GDC anodes by a combination of freeze-drying tape-casting of the NiO-GDC anode, drop-coating GDC slurry on NiO-GDC anode, and co-firing the electrolyte/anode bilayers. Using 3D X-ray microscopy and subsequent analysis, it has been determined that the NiO-GDC anode substrates have a porosity of around 42% and channel size from around 10 μm at the electrolyte side to around 20 μm at the other side of the NiO-GDC (away from the electrolyte), indicating a hierarchically oriented macroporous NiO-GDC microstructure. Such NiO-GDC microstructure shows a tortuosity factor of ∼1.3 along the thickness direction, expecting to facilitate gas diffusion in the anode during fuel cell operation. SOFCs with such Ni-GDC anode, GDC film (30 μm) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3-GDC (LSCF-GDC) cathode show significantly enhanced cell power output of 1.021 W cm(-2) at 600 °C using H2 as fuel and ambient air as oxidant. Electrochemical Impedance Spectroscopy (EIS) analysis indicates a decrease in both activation and concentration polarizations. This study has demonstrated that freeze-drying tape-casting is a very promising approach to fabricate hierarchically oriented porous substrate for SOFC and other applications.