Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington's disease affected brain

Hum Mol Genet. 2014 Aug 1;23(15):4051-63. doi: 10.1093/hmg/ddu119. Epub 2014 Mar 14.

Abstract

All cases of Huntington's disease (HD) are caused by mutant huntingtin protein (mhtt), yet the molecular mechanisms that link mhtt to disease symptoms are not fully elucidated. Given glycogen synthase kinase-3 (GSK3) is implicated in several neurodegenerative diseases as a molecular mediator of neuronal decline and widely touted as a therapeutic target, we investigated GSK3 in cells expressing mhtt, brains of R6/1 HD mice and post-mortem human brain samples. Consistency in data across the two models and the human brain samples indicate decreased GSK3 signalling contributes to neuronal dysfunction in HD. Inhibitory phosphorylation of GSK3 (pGSK3) was elevated in mhtt cells and this appeared related to an overall energy metabolism deficit as the mhtt cells had less ATP and inhibiting ATP production in control cells expressing non-pathogenic htt with paraquat also increased pGSK3. pGSK3 was increased and ATP levels decreased in the frontal cortex and striatum of R6/1 mice and levels of cortical pGSK3 inversely correlated with cognitive function of the mice. Consistent with decreased GSK3 activity in the R6/1 mouse brain, β-catenin levels were increased and phosphorylation of collapsin response mediator protein-2 (CRMP2) decreased in the frontal cortex where inhibitory phosphorylation of GSK3 was the greatest. pGSK3 was predominantly undetectable in HD and healthy control human brain samples, but levels of total GSK3 were decreased in the HD-affected frontal cortex and this correlated with decreased pCRMP2. Thus, disruptions to cortical GSK3 signalling, possibly due to localized energy metabolism deficits, appear to contribute to the cognitive symptoms of HD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / biosynthesis
  • Aged
  • Aged, 80 and over
  • Animals
  • Cell Line
  • Cerebral Cortex / metabolism*
  • Cerebral Cortex / pathology
  • Corpus Striatum / metabolism*
  • Corpus Striatum / pathology
  • Disease Models, Animal
  • Female
  • Gene Expression Regulation
  • Glycogen Synthase Kinase 3 / genetics*
  • Glycogen Synthase Kinase 3 / metabolism
  • Humans
  • Huntingtin Protein
  • Huntington Disease / genetics*
  • Huntington Disease / metabolism
  • Huntington Disease / pathology
  • Intercellular Signaling Peptides and Proteins / genetics*
  • Intercellular Signaling Peptides and Proteins / metabolism
  • Male
  • Mice
  • Mice, Transgenic
  • Middle Aged
  • Nerve Tissue Proteins / genetics*
  • Nerve Tissue Proteins / metabolism
  • Neurons / drug effects
  • Neurons / metabolism
  • Neurons / pathology
  • Paraquat / pharmacology
  • Phosphorylation
  • Signal Transduction
  • beta Catenin / genetics
  • beta Catenin / metabolism

Substances

  • CTNNB1 protein, human
  • HTT protein, human
  • Huntingtin Protein
  • Intercellular Signaling Peptides and Proteins
  • Nerve Tissue Proteins
  • beta Catenin
  • collapsin response mediator protein-2
  • Adenosine Triphosphate
  • Glycogen Synthase Kinase 3
  • Paraquat