Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver

Magn Reson Med. 2015 Mar;73(3):1034-40. doi: 10.1002/mrm.25222. Epub 2014 Mar 17.

Abstract

Purpose: The adoption of multichannel compressed sensing (CS) for clinical magnetic resonance imaging (MRI) hinges on the ability to accurately reconstruct images from an undersampled dataset in a reasonable time frame. When CS is combined with SENSE parallel imaging, reconstruction can be computationally intensive. As an alternative to iterative methods that repetitively evaluate a forward CS+SENSE model, we introduce a technique for the fast computation of a compact inverse model solution.

Methods: A recently proposed hierarchically semiseparable (HSS) solver is used to compactly represent the inverse of the CS+SENSE encoding matrix to a high level of accuracy. To investigate the computational efficiency of the proposed HSS-Inverse method, we compare reconstruction time with the current state-of-the-art. In vivo 3T brain data at multiple image contrasts, resolutions, acceleration factors, and number of receive channels were used for this comparison.

Results: The HSS-Inverse method allows for >6× speedup when compared to current state-of-the-art reconstruction methods with the same accuracy. Efficient computational scaling is demonstrated for CS+SENSE with respect to image size. The HSS-Inverse method is also shown to have minimal dependency on the number of parallel imaging channels/acceleration factor.

Conclusions: The proposed HSS-Inverse method is highly efficient and should enable real-time CS reconstruction on standard MRI vendors' computational hardware.

Keywords: SENSE; compressed sensing; hierarchically semiseparable; parallel imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Brain / anatomy & histology*
  • Data Compression / methods*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted