Background: Iron is essential not only for erythropoisis but also for several bioenergetics' processes in myocardium. Hepcidin is a well-known regulator of iron homeostasis. Recently, researchers identified low hepcidin was independently associated with increased 3-year mortality among systolic heart failure patients. In addition, our previous in vivo study revealed that the left ventricular mass index increased in chronic kidney disease patients with lower serum hepcidin. We hypothesize that hepcidin interacts with the apoptotic pathway of cardiomyocytes during oxidative stress conditions.
Methods: To test this hypothesis, human cardiomyocytes were cultured and treated with ferrous iron. The possible underlying signaling pathways of cardiotoxicity were examined following knockdown studies using siRNAs of hepcidin (siRNA1 was used as a negative control and siRNA2 was used to silence hepcidin).
Results: We found that ferrous iron induces apoptosis in human cardiomyocytes in a dose-dependent manner. This iron-induced apoptosis was linked to enhanced caspase 8, reduced Bcl-2, Bcl-xL, phosphorylated Akt and GATA-4. Hepcidin levels increased in human cardiomyocytes pretreated with ferrous iron and returned to non-iron treated levels following siRNA2 transfection. In iron pretreated cardiomyocytes, the siRNA2 transfection further increased caspase 8 expression and decreased the expression of GATA-4, Bcl-2, Bcl-xL and phosphorylated Akt than iron pretreatment alone, but caspase 9 levels remained unchanged.
Conclusions: Our findings suggest that hepcidin can rescue human cardiomyocytes from iron-induced apoptosis through the regulation of GATA-4/Bcl-2 and the extrinsic apoptotic pathway.