A great number of studies focus their interest on the photophysical properties of fluorescent hybrid gold nanoparticles for potential applications in biotechnologies such as imaging and/or treatment. Spherical gold nanoparticles are known to quench a chromophore fluorescent signal, when moieties are located in their close vicinity. The use of a polymer spacer on such a system allowed only partial recovery of the dye emission by controlling the surface to dye distance. Gold-based anisotropic sharp nanostructures appear to exhibit more interesting features due to the strong electric field generated at their edges and tips. In this paper, a complete study of hybrid fluorescent bipyramidal-like gold nanostructures is presented. We describe the chemical synthesis of gold bipyramids functionalized with fluorescent water-soluble polymers and their photophysics both in solution and on a single object. We show that the use of a bipyramidal shape instead of a spherical one leads to total recovery of the fluorescence and even to an enhancement of the emission of the dyes by a factor of 1.4.