Two-dimensional layered crystals could show phonon properties that are markedly distinct from those of their bulk counterparts, because of the loss of periodicities along the c-axis directions. Here we investigate the phonon properties of bulk and atomically thin α-MoTe2 using Raman spectroscopy. The Raman spectrum of α-MoTe2 shows a prominent peak of the in-plane E(1)2g mode, with its frequency upshifting with decreasing thickness down to the atomic scale, similar to other dichalcogenides. Furthermore, we find large enhancement of the Raman scattering from the out-of-plane B(1)2g mode in the atomically thin layers. The B(1)2g mode is Raman inactive in the bulk, but is observed to become active in the few-layer films. The intensity ratio of the B(1)2g to E(1)2g peaks evolves significantly with decreasing thickness, in contrast with other dichalcogenides. Our observations point to strong effects of dimensionality on the phonon properties of MoTe2.