Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications

Nano Lett. 2014;14(4):2219-24. doi: 10.1021/nl500795k. Epub 2014 Mar 27.

Abstract

We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques / instrumentation*
  • Electric Impedance
  • Electrochemical Techniques / instrumentation
  • Electrodes
  • Equipment Design
  • Gold / chemistry*
  • HeLa Cells
  • Humans
  • Ions / analysis*
  • Microfluidic Analytical Techniques / instrumentation*
  • Single-Cell Analysis / instrumentation*

Substances

  • Ions
  • Gold