Role of aberrant PI3K pathway activation in gallbladder tumorigenesis

Oncotarget. 2014 Feb 28;5(4):894-900. doi: 10.18632/oncotarget.1808.

Abstract

The PI3K/AKT pathway governs a plethora of cellular processes, including cell growth, proliferation, and metabolism, in response to growth factors and cytokines. By acting as a unique lipid phosphatase converting phosphatidylinositol-3,4,5,- trisphosphate (PIP3) to phosphatidylinositol-4,5,-bisphosphate (PIP2), phosphatase and tensin homolog (PTEN) acts as the major cellular suppressor of PI3K signaling and AKT activation. Recently, PI3K mutations and loss/mutation of PTEN have been characterized in human gallbladder tumors; whether aberrant PTEN/PI3K pathway plays a causal role in gallbladder carcinogenesis, however, remains unknown. Herein we show that in mice, deregulation of PI3K/AKT signaling is sufficient to transform gallbladder epithelial cells and trigger fully penetrant, highly proliferative gallbladder tumors characterized by high levels of phospho-AKT. Histopathologically, these mouse tumors faithfully resemble human adenomatous gallbladder lesions. The identification of PI3K pathway deregulation as both an early event in the neoplastic transformation of the gallbladder epithelium and a main mechanism of tumor growth in Pten heterozygous and Pten mutant mouse models provides a new framework for studying in vivo the efficacy of target therapies directed against the PI3K pathway, as advanced metastatic tumors are often addicted to "trunkular" mutations.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Carcinogenesis
  • Cell Growth Processes / physiology
  • Gallbladder Neoplasms / enzymology*
  • Gallbladder Neoplasms / metabolism
  • Gallbladder Neoplasms / pathology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • PTEN Phosphohydrolase / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction

Substances

  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • Pten protein, mouse