Several aspects of the activity and effects of tumor necrosis factor (TNF) were investigated to gain further insight into its cytotoxic mechanism. The relation between number of TNF receptors and TNF susceptibility of both tumor cells and normal cells was studied, utilizing a specific binding assay. Among the tumor cells, a fairly close correlation (r = 0.855) was observed between receptor number and sensitivity to TNF. No cytotoxic effect by TNF was observed on any of the normal cells tested, even though TNF receptors were shown to be present, and cell proliferation was apparently stimulated by TNF in some cases. TNF internalization and intracellular distribution were studied by pulse-labelling and Percoll density gradient centrifugation. In L-M (murine tumorigenic fibroblasts, highly sensitive to TNF cytotoxicity) cells and HEL (human embryonic lung cells, non-sensitive to TNF cytotoxicity) cells, receptor-bound 125I-labelled recombinant human TNF was rapidly internalized and delivered to lysosomes within 15-30 min, and this was followed by degradation and release into the culture medium. The presence of either a cytoskeletal disrupting agent or a lysosomotropic agent was observed to inhibit the cytotoxic effect of TNF, thus also indicating that TNF internalization, followed by delivery to lysosomes, is essential in the cytolytic mechanism of TNF. As observed by [3H]uridine incorporation, TNF did not affect RNA synthesis in L-R cells (TNF-resistant cell lines derived from L-M cells) and HEL cells, but markedly stimulated (by 3.5 times) RNA synthesis in L-M cells.