Cloning and characterization of a wheat homologue of apurinic/apyrimidinic endonuclease Ape1L

PLoS One. 2014 Mar 25;9(3):e92963. doi: 10.1371/journal.pone.0092963. eCollection 2014.

Abstract

Background: Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized.

Methodology/principal findings: We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3'-repair phosphodiesterase, 3'-phosphatase and 3' → 5' exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg(2+) and Ca(2+) (5-10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn(2+), Co(2+) and Fe(2+) cations (0.1-1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6-7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20 °C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3'-blocking sugar-phosphate and 3'-phosphate groups with good efficiency (kcat/KM = 630 and 485 μM(-1) · min(-1), respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1.

Conclusions/significance: Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Biocatalysis
  • Cloning, Molecular
  • DNA / chemistry
  • DNA / genetics
  • DNA / metabolism
  • DNA Repair
  • DNA-(Apurinic or Apyrimidinic Site) Lyase / chemistry
  • DNA-(Apurinic or Apyrimidinic Site) Lyase / genetics*
  • DNA-(Apurinic or Apyrimidinic Site) Lyase / metabolism*
  • Escherichia coli / drug effects
  • Escherichia coli / enzymology
  • Humans
  • Kinetics
  • Models, Molecular
  • Molecular Sequence Data
  • Phosphoric Diester Hydrolases / metabolism
  • Phosphoric Monoester Hydrolases / metabolism
  • Protein Conformation
  • Sequence Homology, Nucleic Acid*
  • Substrate Specificity
  • Triticum / enzymology*
  • Triticum / genetics*

Substances

  • DNA
  • Phosphoric Monoester Hydrolases
  • Phosphoric Diester Hydrolases
  • DNA-(Apurinic or Apyrimidinic Site) Lyase

Grants and funding

This work was supported by grants from Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan [grants No 0145/GF and No 0738GF] to A.K.B. and from Agence Nationale pour la Recherche [ANR Blanc 2010 Projet ANR- 09-GENO-000 to M.S.] (http://www.agence-nationale-recherche.fr), Electricité de France (http://www.edf.fr) Contract Radioprotection [RB 2013–23 to M.S.]; Centre National de la Recherche Scientifique (http://www.cnrs.fr) [PICS N5479-Russie, and CNRS-INCA-MSHE Franco-Pologne #3037987 to M.S.] and by Fondation de France (http://www.fondationdefrance.org) [#2012 00029161 to A.A.I.] and by Polish-French collaborative grants N°346/N-INCA/2008/0 and N°303 819540 [to B.T.] and by Russian Academy of Sciences [MKB 6.12 to D.O.Z.]; Russian Foundation for Basic Research [12-04-33231-mol_a_ved to I.R.G.]; P.P. was supported by the fellowship from International PhD Projects Programme of Foundation for Polish Science: “Studies of nucleic acids and proteins - from basic to applied research”. The project is co-financed by European Union - Regional Development Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.