What can proteomics tell us about platelets?

Circ Res. 2014 Mar 28;114(7):1204-19. doi: 10.1161/CIRCRESAHA.114.301598.

Abstract

More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic differences in post-translational modifications. Modern platelet proteomics approaches can reveal (1) quantitative changes in the abundance of thousands of proteins, (2) post-translational modifications, (3) protein-protein interactions, and (4) protein localization, while requiring only small blood donations in the range of a few milliliters. Consequently, platelet proteomics will represent an invaluable tool for characterizing the fundamental processes that affect platelet homeostasis and thus determine the roles of platelets in health and disease. In this article we provide a critical overview on the achievements, the current possibilities, and the future perspectives of platelet proteomics to study patients experiencing cardiovascular, inflammatory, and bleeding disorders.

Keywords: bleeding; blood platelets; cardiovascular diseases; hemorrhage; proteome; proteomics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Blood Platelets / chemistry
  • Blood Platelets / metabolism*
  • Blood Proteins / chemistry*
  • Blood Proteins / genetics
  • Blood Proteins / metabolism
  • Humans
  • Proteome / chemistry*
  • Proteome / genetics
  • Proteome / metabolism
  • Proteomics / methods*
  • Signal Transduction
  • Transcriptome

Substances

  • Blood Proteins
  • Proteome