In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection

Anal Chem. 2014 May 6;86(9):4536-43. doi: 10.1021/ac500517h. Epub 2014 Apr 10.

Abstract

A new fluorescent assay based on in situ ultrasound-assisted synthesis of carbon dots (CDs) as optical nanoprobes for the detection of methylmercury has been developed. Application of high-intensity sonication allows simultaneous performance of the synthesis of fluorescent CDs within the analytical time scale and the selective recognition of the target analyte. Microvolume fluorospectrometry is applied for measurement of the fluorescence quenching caused by methylmercury. The assay uses low amounts of organic precursors (fructose, poly(ethylene glycol), and ethanol) and can be accomplished within 1 min. A detection limit of 5.9 nM methylmercury and a repeatability expressed as a relative standard deviation of 2.2% (N = 7) were obtained. CDs displayed a narrow size distribution with an average size of 2.5 nm as determined by electron transmission microscopy. To study the quenching mechanism, fluorescence, atomic absorption spectrometry, and Fourier transform infrared spectrometry were applied. Hydrophobicity of methylmercury and its ability to facilitate a nonradiative electron/hole recombination are suggested as the basis of the recognition event. A simple and green assay is achieved for quick detection of methylmercury without the use of tedious sample preparation procedures or complex and expensive instrumentation.