Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress

Oncotarget. 2014 Mar 30;5(6):1526-37. doi: 10.18632/oncotarget.1715.

Abstract

The interplay between oxidative stress and autophagy is critical for determining the fate of cancer cells exposed to redox-active and cytotoxic chemotherapeutic agents. Mitoquinone (MitoQ), a mitochondrially-targeted redox-active ubiquinone conjugate, selectively kills breast cancer cells over healthy mammary epithelial cells. We reported previously that MitoQ, although a derivative of the antioxidant ubiquinone, can generate excess ROS and trigger the Keap1-Nrf2 antioxidant response in the MDA-MB-231 cell line. Following MitoQ treatment, a greater number of cells underwent autophagy than apoptosis. However, the relationship between MitoQ-induced oxidative stress and autophagy as a primary cellular response was unclear. In this report, we demonstrate that MitoQ induces autophagy related gene 7 (Atg7)-dependent, yet Beclin-1-independent, autophagy marked by an increase in LC3-II. Both the ATG7-deficient human MDA-MB-231 cells and Atg7-knockout mouse embryonic fibroblasts exhibited lower levels of autophagy following MitoQ treatment than their respective wild-type counterparts. Increased apoptosis was confirmed in these autophagy-deficient isogenic cell line pairs, indicating that autophagy was attempted for survival in wild type cell lines. Furthermore, we observed higher levels of ROS in Atg7-deficient cells, as measured by hydroethidine oxidation. In Atg7-deficient cells, redox-sensitive Keap1 degradation was decreased, suggesting autophagy- and Atg7-dependent degradation of Keap1. Conversely, downregulation of Keap1 decreased autophagy levels, increased Nrf2 activation, upregulated cytoprotective antioxidant gene expression, and caused accumulation of p62, suggesting a feedback loop between ROS-regulated Keap1-Nrf2 and Atg7-regulated autophagy. Our data indicate that excessive ROS causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response triggered by cytotoxic levels of MitoQ.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis Regulatory Proteins / antagonists & inhibitors
  • Apoptosis Regulatory Proteins / genetics
  • Apoptosis Regulatory Proteins / metabolism
  • Autophagy / drug effects*
  • Autophagy-Related Protein 7
  • Beclin-1
  • Blotting, Western
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Proliferation / drug effects
  • Female
  • Humans
  • Immunoenzyme Techniques
  • Intracellular Signaling Peptides and Proteins / antagonists & inhibitors
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Kelch-Like ECH-Associated Protein 1
  • Membrane Proteins / antagonists & inhibitors
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mice
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • Organophosphorus Compounds / pharmacology*
  • Oxidative Stress / drug effects*
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tumor Cells, Cultured
  • Ubiquinone / analogs & derivatives*
  • Ubiquinone / pharmacology
  • Ubiquitin-Activating Enzymes / antagonists & inhibitors
  • Ubiquitin-Activating Enzymes / genetics
  • Ubiquitin-Activating Enzymes / metabolism*

Substances

  • Apoptosis Regulatory Proteins
  • BECN1 protein, human
  • Beclin-1
  • Intracellular Signaling Peptides and Proteins
  • KEAP1 protein, human
  • Kelch-Like ECH-Associated Protein 1
  • Membrane Proteins
  • NF-E2-Related Factor 2
  • Organophosphorus Compounds
  • RNA, Messenger
  • Ubiquinone
  • mitoquinone
  • ATG7 protein, human
  • Autophagy-Related Protein 7
  • Ubiquitin-Activating Enzymes