Background: Autograft reconstruction of the coronoid using the tip of the olecranon has been described as a treatment option for comminuted coronoid fractures or coronoid nonunions that are not repairable. The purpose of this in vitro biomechanical study of the coronoid-deficient elbow was to determine whether coronoid reconstruction using the tip of the ipsilateral olecranon would restore elbow kinematics.
Methods: An elbow motion simulator was used to perform active and passive extension of six cadaveric arms in the horizontal, valgus, varus, and vertical orientations. Elbow kinematics were quantified with use of the screw displacement axis of the ulna with respect to the humerus. Testing was performed with an intact coronoid, a 40% coronoid deficiency, and a coronoid reconstruction using the tip of the ipsilateral olecranon.
Results: Creation of a 40% coronoid deficiency resulted in significant changes (range, 3.6° to 10.9°) in the angular deviations of the screw displacement axis relative to the intact state during simulated active and passive extension in the varus orientation with the forearm in pronation and in supination (p < 0.05). Reconstruction of the coronoid using the ipsilateral olecranon tip restored the angular deviations to those in the intact state (p > 0.05) with the arm in all orientations except valgus, in which there was a small but significant difference (0.4° ± 0.2°, p = 0.04) during passive motion with forearm supination.
Conclusions: Reconstruction of the coronoid using the tip of the ipsilateral olecranon was an effective method for restoring normal kinematics over a range of elbow motion from 20° to 120° in a cadaveric model of an elbow with a 40% coronoid deficiency. This reconstruction technique may prove beneficial for patients with elbow instability due to coronoid deficiency.