Background: Variability has been described between different echo machines and different modalities when measuring tissue velocities. We assessed the consistency of tissue velocity measurements across different modalities and different manufacturers in an in vitro model and in patients. Furthermore, we present freely available software tools to repeat these evaluations.
Methods and results: We constructed a simple setup to generate reproducible motion and used it to compare velocities measured using three echocardiographic modalities: M-mode, speckle tracking, and tissue Doppler, with a straightforward, non-ultrasound, optical gold standard. In the clinical phase, 25 patients underwent M-mode, speckle tracking, and tissue Doppler measurements of s', e', and a' velocities. In vitro, the M-mode and speckle tracking velocities agreed with optical assessment. Of the three possible tissue Doppler measurement conventions (outer, middle, and inner edge) only the middle agreed with optical assessment (discrepancy -0.20 (95% CI -0.44 to 0.03) cm/s, P = 0.11, outer +5.19 (4.65 to 5.73) cm/s, P < 0.0001, inner -6.26 (-6.87 to -5.65) cm/s, P < 0.0001). A similar pattern occurred across all four studied manufacturers. M-mode was therefore chosen as the in vivo gold standard. Clinical measurements of s' velocities by speckle tracking and the middle line of the tissue Doppler showed concordance with M-mode, while the outer line overestimated significantly (+1.27(0.96 to 1.59) cm/s, P < 0.0001) and the inner line underestimated (-1.82 (-2.11 to -1.52) cm/s, P < 0.0001).
Conclusions: Echocardiographic velocity measurements can be more consistent than previously suspected. The statistically modal velocity, found at the centre of the spectral pulsed wave tissue Doppler envelope, most closely represents true tissue velocity. This article includes downloadable, vendor-independent software enabling calibration of echocardiographic machines using a simple, inexpensive in vitro setup.
Keywords: Calibration; Echocardiography; Tissue Doppler; Velocity.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: [email protected].