A simple and reliable multi-gene transformation method for switchgrass

Plant Cell Rep. 2014 Jul;33(7):1161-72. doi: 10.1007/s00299-014-1605-8. Epub 2014 Apr 4.

Abstract

A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agrobacterium tumefaciens / drug effects
  • Agrobacterium tumefaciens / genetics
  • Anti-Bacterial Agents / pharmacology
  • Genetic Markers
  • Genetic Vectors*
  • Herbicide Resistance / genetics
  • Herbicides / pharmacology
  • Panicum / drug effects
  • Panicum / genetics*
  • Plants, Genetically Modified*
  • Transformation, Genetic*

Substances

  • Anti-Bacterial Agents
  • Genetic Markers
  • Herbicides