Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action implicated in the clinical efficacy of several therapeutic antibodies. In vitro ADCC assays employing effector cells capable of inducing lysis of target cells bound by antibodies are routinely performed to support the research and development of therapeutic antibodies. ADCC assays are commonly performed using peripheral blood mononuclear cells (PBMCs), natural killer (NK) cells or engineered cell lines as effector cells. In this study we evaluated the impact of different effector cell types including primary PBMCs, primary NK cells, engineered NK cell lines, and an engineered reporter cell line, on the in vitro ADCC activity of two glycoforms of a humanized IgG1 antibody. The results of this study show the differential effects on both the efficacy and potency of the antibodies by different effector cells and the finding that both the allotype and the expression level of CD16a affect the potency of effector cells in ADCC assays. Our results also show that engineered NK or reporter cell lines provide reduced variability compared to primary effector cells for in vitro ADCC assays.
Keywords: ADCC assay; Afucosylated antibody; Antibody-dependent cell-mediated cytotoxicity; CD16a; Glycosylation; Monoclonal antibody.
Copyright © 2014 Elsevier B.V. All rights reserved.