What doesn't kill you makes you wary? Effect of repeated culling on the behaviour of an invasive predator

PLoS One. 2014 Apr 4;9(4):e94248. doi: 10.1371/journal.pone.0094248. eCollection 2014.

Abstract

As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bahamas
  • Coral Reefs
  • Ecosystem
  • Introduced Species*
  • Islands
  • Oceanography
  • Perciformes*
  • Predatory Behavior*

Grants and funding

This research was supported by a Global Environment Facility/United Nations Environment Programme grant to the government of The Bahamas through the MTIASIC project (NSS), and a Natural Sciences and Engineering Research Council of Canada Discovery grant to IMC. LMC was supported by CONACyT scholarship from Mexico, SJG by an NSERC Canada Graduate Fellowship and NOAA Coral Reef Conservation Grant. Support to JCQ was provided by the Carrow Foundation and Stone Family Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.