Physico-chemical and mechanical properties of cuttlefish skin gelatin (G), chitosan (C) from shrimp (Penaeus kerathurus) and composite films (G75/C25, G50/C50, G25/C75) plasticized with glycerol were investigated. The results indicated that chitosan film had higher tensile strength and lower elongation at break when compared with the other films. Composite films show no significant difference in tensile strength (TS), thickness and transparency. The structural properties evaluated by FTIR and DSC showed total miscibility between both polymers. DSC scans showed that the increase of chitosan content in the composite films increases the transition temperature (Tg) and enthalpy (ΔHg) of films. The morphology study of gelatin, chitosan and composite films showed a compact and homogenous structure. In addition, gelatin and G75/C25 films demonstrated a high antioxidant activities monitored by β-carotene bleaching, DPPH radical-scavenging and reducing power activities, while films contained chitosan exhibited higher antimicrobial activity against Gram-positive than Gram-negative bacteria.
Keywords: Antioxidant and antibacterial activity; Composite gelatin–chitosan films; Microstructure.
Copyright © 2014 Elsevier B.V. All rights reserved.