Although gain of oncogene functions and loss of tumor suppressor functions are driving forces in tumor development, the tumor microenvironment, comprising the extracellular matrix, surrounding stroma, signaling molecules and infiltrating immune and other cell populations, is now also recognized as crucial to tumor development and metastasis. Many interactions at the tumor cell-environment interface occur at the protein level. Proteomic approaches are contributing to the definition of the protein constituents of the microenvironment and their sources, modifications, interactions and turnover, as well as providing information on how these features relate to tumor development and progression. Recently, proteomic studies have revealed how cancer cells modulate the microenvironment through their secreted proteins and how they can alter their protein constituents to adapt to the microenvironment. Moreover, the release of proteins from the microenvironment into the circulatory system has relevance for the development of blood-based cancer diagnostics. Here, we review how proteomic approaches are being applied to studies of the tumor microenvironment to decipher tumor-stroma interactions and to elucidate the role of host cells in the tumor microenvironment.