Polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives, such as methylnaphthalenes (MeNs), are harmful pollutants ubiquitously present in the environment. Exposure to PAHs has been linked to a variety of adverse health effects and outcomes, including cancer. Alkyl PAHs have been proposed as petrogenic source indicators because of their relatively high abundance in unburned petroleum products. We report a method to quantify 11 urinary methylnaphthols (Me-OHNs), metabolites of 1- and 2-methylnaphthalenes, and 10 monohydroxy PAH metabolites (OH-PAHs), using automated liquid-liquid extraction and isotope dilution gas chromatography tandem mass spectrometry (GC-MS/MS). After spiking urine (1 mL) with (13)C-labeled internal standards, the conjugated target analytes were hydrolyzed enzymatically in the presence of ascorbic acid. Then, their free species were preconcentrated into 20 % toluene in pentane, derivatized and quantified by GC-MS/MS. The 11 Me-OHNs eluted as 6 distinct chromatographic peaks, each representing 1 - 3 isomers. Method detection limits were 1.0- 41 pg/mL and the coefficients of variation in quality control materials were 4.7 - 19 %. The method was used to analyze two National Institute of Standards and Technology's Standard Reference Materials® and samples from 30 smokers and 30 non-smokers. Geometric mean concentrations were on average 37 (Me-OHNs) and 9.0 (OH-PAHs) fold higher in smokers than in non-smokers. These findings support the usefulness of Me-OHNs as potential biomarkers of non-occupational exposure to MeNs and sources containing MeNs.