Fine particle air pollution and mortality: importance of specific sources and chemical species

Epidemiology. 2014 May;25(3):379-88. doi: 10.1097/EDE.0000000000000044.

Abstract

Background: While exposure to ambient fine particles <2.5 μm in aerodynamic diameter (PM2.5) has well-established health effects, there is limited quantitative evidence that links specific sources of PM2.5 with those effects. This study was designed to examine the risks of exposure to chemical species and source-specific PM2.5 mass on mortality in Seoul, Korea, a highly populated city.

Methods: We compare daily mortality counts with PM2.5 chemical speciation data collected every 3 days, as well as nine sources of PM2.5 mass resolved by a positive matrix factorization receptor model, from March 2003 through November 2007. A Poisson generalized linear model incorporating natural splines was used to evaluate associations of PM2.5 chemical species and sources with mortality.

Results: PM2.5 mass and several chemical species were associated with mortality. Organic carbon, elemental carbon, and lead were associated with mortality outcomes when using multipollutant models adjusted for other chemical species levels. Source-apportioned PM2.5 derived from mobile sources (ie, gasoline and diesel emissions) and biomass burning was associated with respiratory mortality and cardiovascular mortality, respectively. There were moderate associations of industry and of roadway emissions with cardiovascular mortality.

Conclusions: Local combustion sources may be particularly important contributors to PM2.5, leading to adverse health effects.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / adverse effects*
  • Air Pollutants / chemistry*
  • Air Pollution / adverse effects
  • Cardiovascular Diseases / etiology
  • Cardiovascular Diseases / mortality*
  • Cardiovascular Diseases / physiopathology
  • Cause of Death*
  • Databases, Factual
  • Environmental Monitoring / methods
  • Female
  • Humans
  • Linear Models
  • Male
  • Particulate Matter / adverse effects*
  • Poisson Distribution
  • Republic of Korea
  • Respiratory Tract Diseases / etiology
  • Respiratory Tract Diseases / mortality*
  • Respiratory Tract Diseases / physiopathology
  • Seoul
  • Survival Analysis
  • Urban Population

Substances

  • Air Pollutants
  • Particulate Matter