Polymer nanoparticles for controlled release stimulated by visible light and pH

Macromol Rapid Commun. 2014 Jul;35(14):1255-9. doi: 10.1002/marc.201400078. Epub 2014 Apr 9.

Abstract

Polymer nanoparticles are prepared by self-assembly of visible light and pH sensitive perylene-functionalized copolymers which are synthesized by quaternization between 1-(bromomethyl)perylene and the dimethylaminoethyl units of poly(dimethylaminoethyl methacrylate) (PDMAEMA). The perylene-containing polymethacrylate segments afford the system visible light responsiveness and the unquaternized PDMAEMA segments afford the system pH responsiveness. The self-assembled nanoparticles exhibit a unique dual stimuli response. They can be photocleaved under visible light irradiation, shrunken to smaller nanoparticles at high pH, and swollen at low pH. The structural change endows the nanoparticle with great potential as a sensitive nanocarrier for controlled release of Nile Red and lysozyme under this stimulation. The visible light responsiveness and synergistic effect on the release of loaded molecules with the dual stimulation may obviate the need for harsh conditions such as UV light or extreme pH stimulation, rendering the system more applicable under mild conditions.

Keywords: colloids; nanoparticles; nanotechnology; self-assembly; stimuli-sensitive polymers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Membrane / drug effects
  • Cell Membrane / metabolism
  • Delayed-Action Preparations
  • Drug Carriers / chemistry
  • Hydrogen-Ion Concentration
  • Light*
  • Methacrylates / chemistry
  • Micrococcus / drug effects
  • Micrococcus / metabolism
  • Muramidase / metabolism*
  • Muramidase / pharmacology
  • Nanoparticles / chemistry*
  • Nanoparticles / metabolism
  • Nylons / chemistry
  • Oxazines / metabolism*
  • Polymers / chemistry*
  • Polymers / metabolism

Substances

  • Delayed-Action Preparations
  • Drug Carriers
  • Methacrylates
  • Nylons
  • Oxazines
  • Polymers
  • poly(2-(diethylamino)ethyl methacrylate)
  • Muramidase
  • nile red