Using mass defect plots as a discovery tool to identify novel fluoropolymer thermal decomposition products

J Mass Spectrom. 2014 Apr;49(4):291-6. doi: 10.1002/jms.3340.

Abstract

Fire events involving halogenated materials, such as plastics and electronics, produce complex mixtures that include unidentified toxic and environmentally persistent contaminants. Ultrahigh-resolution mass spectrometry and mass defect filtering can facilitate compound identification within these complex mixtures. In this study, thermal decomposition products of polychlorotrifluoroethylene (PCTFE, [-CClF-CF2 -]n), a common commercial polymer, were analyzed by Fourier transform ion cyclotron resonance mass spectrometry. Using the mass defect plot as a guide, novel PCTFE thermal decomposition products were identified, including 29 perhalogenated carboxylic acid (PXCA, X = Cl,F) congener classes and 21 chlorine/fluorine substituted polycyclic aromatic hydrocarbon (X-PAH, X = Cl,F) congener classes. This study showcases the complexity of fluoropolymer thermal decomposition and the potential of mass defect filtering to characterize complex environmental samples.

Keywords: fluoropolymers; mass defect; polychlorotrifluoroethylene; thermal decomposition; unknown identification.