To define the amino acids involved in IgG subclass reactivity to two overlapping HIV-1 gp41 (E34/32; amino acid positions 582-613) peptides, sera from 18 HIV-infected individuals were studied. Peptides mimicking E34 but with single amino acid deletions or glycine substitutions were used to define the amino acid residues necessary for antibody binding. Two dominating immunogenic epitopes, containing highly hydrophilic amino acids, were found on the original peptide. Further analysis was undertaken with two corresponding omission sets of dodecapeptides representing halves of the complete E34 plus a terminal cystein peptide. The subclass reactivities usually differed between the patients with regard to the epitopes with which the different IgG subclasses reacted and also to the importance of different amino acids in antibody binding. The 600 glycine and the 601 lysine were involved in the binding of all IgG1, 2 and 4 and most IgG3. The development of E34/32-reactive IgM and IgG subclasses showed different patterns in four patients with primary HIV infections, contradicting the existence of a general pattern for the development of IgG subclasses to this peptide. The findings suggest that different progenitor clones are selected for synthesis of the different subclasses.