Resistance to aromatase inhibitors is a major concern in the treatment of breast cancer. Long-term letrozole cultured (LTLC) cells represent a model of resistance to aromatase inhibitors. The LTLC cells were earlier generated by culturing MCF-7Ca, the MCF-7 human breast cancer cell line stably transfected with human placental aromatase gene for a prolonged period in the presence of letrozole. In the present study the effect of RAMBA, VN/14-1 on the sensitivity of LTLC cells upon multiple passaging and the mechanisms of action of VN/14-1 in such high passage LTLC (HP-LTLC) cells was investigated. We report that multiple passaging of LTLC cells (HP-LTLC cell clones) led to profound decrease in their sensitivity to VN/14-1. Additionally, microarray studies and protein analysis revealed that VN/14-1 induced marked endoplasmic reticulum (ER) stress and autophagy in HP-LTLC cells. We further report that VN/14-1 in combination with thapsigargin exhibited synergistic anti-cancer effect in HP-LTLC cells. Preliminary pharmacokinetics in rats revealed that VN/14-1 reached a peak plasma concentration (Cmax) within 0.17h after oral dosing. Its absolute oral bioavailability was >100%. Overall these results indicate potential of VN/14-1 for further clinical development as a potential oral agent for the treatment of breast cancer.
Keywords: Autophagy; Breast cancer; ER stress; LTLC; Pharmacokinetics (PK); RAMBA-VN/14-1.
Copyright © 2014 Elsevier B.V. All rights reserved.