The frequent activation of the PI3K/AKT/mTOR pathway in cancer, and its crucial role in cell growth and survival, has made it a much desired target for pharmacologic intervention. Following the regulatory approval of the rapamycin analogs everolimus and temsirolimus, recent years have seen an explosion in the number of phosphoinositide 3-kinase (PI3K) pathway inhibitors under clinical investigation. These include: ATP-competitive, dual inhibitors of class I PI3K and mTORC1/2; "pan-PI3K" inhibitors, which inhibit all four isoforms of class I PI3K (α, β, δ, γ); isoform-specific inhibitors of the various PI3K isoforms; allosteric and catalytic inhibitors of AKT; and ATP-competitive inhibitors of mTOR only (and thus mTORC1 and mTORC2). With so many agents in development, clinicians are currently faced with a wide array of clinical trials investigating a multitude of inhibitors with different mechanisms of action, being used both as single agents and in combination with other therapies. Here, we provide a review of the literature, with the aim of differentiating the genomic contexts in which these various types of inhibitors may potentially have superior activity.