A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit

PLoS One. 2014 Apr 23;9(4):e95768. doi: 10.1371/journal.pone.0095768. eCollection 2014.

Abstract

Autosomal dominant congenital stationary night blindness (adCSNB) is caused by mutations in three genes of the rod phototransduction cascade, rhodopsin (RHO), transducin α-subunit (GNAT1), and cGMP phosphodiesterase type 6 β-subunit (PDE6B). In most cases, the constitutive activation of the phototransduction cascade is a prerequisite to cause adCSNB. The unique adCSNB-associated PDE6B mutation found in the Rambusch pedigree, the substitution p.His258Asn, leads to rod photoreceptors desensitization. Here, we report a three-generation French family with adCSNB harboring a novel PDE6B mutation, the duplication, c.928-9_940dup resulting in a tyrosine to cysteine substitution at codon 314, a frameshift, and a premature termination (p.Tyr314Cysfs*50). To understand the mechanism of the PDE6β1-314fs*50 mutant, we examined the properties of its PDE6-specific portion, PDE6β1-313. We found that PDE6β1-313 maintains the ability to bind noncatalytic cGMP and the inhibitory γ-subunit (Pγ), and interferes with the inhibition of normal PDE6αβ catalytic subunits by Pγ. Moreover, both truncated forms of the PDE6β protein, PDE6β1-313 and PDE6β1-314fs*50 expressed in rods of transgenic X. laevis are targeted to the phototransduction compartment. We hypothesize that in affected family members the p.Tyr314Cysfs*50 change results in the production of the truncated protein, which binds Pγ and causes constitutive activation of the phototransduction thus leading to the absence of rod adaptation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Catalytic Domain / genetics
  • Catalytic Domain / physiology
  • Cyclic Nucleotide Phosphodiesterases, Type 6 / genetics
  • Cyclic Nucleotide Phosphodiesterases, Type 6 / metabolism*
  • Eye Diseases, Hereditary / etiology*
  • Eye Diseases, Hereditary / genetics
  • Eye Diseases, Hereditary / metabolism*
  • Genetic Diseases, X-Linked / etiology*
  • Genetic Diseases, X-Linked / genetics
  • Genetic Diseases, X-Linked / metabolism*
  • Heterotrimeric GTP-Binding Proteins / genetics
  • Heterotrimeric GTP-Binding Proteins / metabolism
  • Humans
  • Light Signal Transduction / genetics
  • Light Signal Transduction / physiology
  • Mutation
  • Myopia / etiology*
  • Myopia / genetics
  • Myopia / metabolism*
  • Night Blindness / etiology*
  • Night Blindness / genetics
  • Night Blindness / metabolism*
  • Transducin
  • Xenopus laevis

Substances

  • GNAT1 protein, human
  • Cyclic Nucleotide Phosphodiesterases, Type 6
  • Heterotrimeric GTP-Binding Proteins
  • Transducin

Supplementary concepts

  • Night blindness, congenital stationary