Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone

Eur J Endocrinol. 2014 Jul;171(1):77-88. doi: 10.1530/EJE-14-0006. Epub 2014 Apr 23.

Abstract

Objective: Recent studies have indicated that serum testosterone in aging men is associated with insulin sensitivity and expression of genes involved in oxidative phosphorylation (OxPhos), and that testosterone treatment increases lipid oxidation. Herein, we investigated the effect of testosterone therapy on regulators of mitochondrial biogenesis and markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels.

Methods: Skeletal muscle biopsies were obtained before and after treatment with either testosterone gel (n=12) or placebo (n=13) for 6 months. Insulin sensitivity and substrate oxidation were assessed by euglycemic-hyperinsulinemic clamp and indirect calorimetry. Muscle mRNA levels and protein abundance and phosphorylation of enzymes involved in mitochondrial biogenesis, OxPhos, and lipid metabolism were examined by quantitative real-time PCR and western blotting.

Results: Despite an increase in lipid oxidation (P<0.05), testosterone therapy had no effect on insulin sensitivity or mRNA levels of genes involved in mitochondrial biogenesis (PPARGC1A, PRKAA2, and PRKAG3), OxPhos (NDUFS1, ETFA, SDHA, UQCRC1, and COX5B), or lipid metabolism (ACADVL, CD36, CPT1B, HADH, and PDK4). Consistently, protein abundance of OxPhos subunits encoded by both nuclear (SDHA and UQCRC1) and mitochondrial DNA (ND6) and protein abundance and phosphorylation of AMP-activated protein kinase and p38 MAPK were unaffected by testosterone therapy.

Conclusion: The beneficial effect of testosterone treatment on lipid oxidation is not explained by increased abundance or phosphorylation-dependent activity of enzymes known to regulate mitochondrial biogenesis or markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / physiology*
  • Blotting, Western
  • Body Composition / drug effects
  • Body Composition / physiology
  • Electrophoresis, Polyacrylamide Gel
  • Lipid Metabolism / physiology*
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / metabolism*
  • Oxidative Phosphorylation / drug effects
  • Real-Time Polymerase Chain Reaction
  • Testosterone / pharmacology*

Substances

  • Testosterone