Introduction: The dysfunction of glycogen synthase kinase-3β (GSK-3β) has been implicated in a number of diseases, including Alzheimer's disease. The ability to non-invasively quantify GSK-3β activity in vivo is therefore of critical importance, and this work is focused upon development of inhibitors of GSK-3β radiolabeled with carbon-11 to examine quantification of the enzyme using positron emission tomography (PET) imaging.
Methods: (11)C PyrATP-1 was prepared from the corresponding desmethyl-piperazine precursor in an automated synthesis module. In vivo rodent and primate imaging studies were conducted on a Concorde MicroPET P4 scanner to evaluate imaging properties and in vitro autoradiography studies with rat brain samples were carried out to examine specific binding.
Results: 2035±518MBq (55±14mCi) of [(11)C]PyrATP-1 was obtained (1%-2% non-corrected radiochemical yield at end-of-synthesis based upon [(11)C]CO2) with high chemical (>95%) and radiochemical (>99%) purities, and good specific activities (143±52GBq/μmol (3874±1424Ci/mmol)), n=5. In vivo microPET imaging studies revealed poor brain uptake in rodents and non-human primates. Pretreatment of rodents with cyclosporin A resulted in moderately increased brain uptake suggesting Pgp transporter involvement. Autoradiography demonstrated high levels of specific binding in areas of the rodent brain known to be rich in GSK-3β.
Conclusion: (11)C PyrATP-1 is readily synthesized using standard carbon-11 radiochemistry. However the poor brain uptake in rodents and non-human primates indicates that the radiotracer is not suitable for the purposes of quantifying GSK-3β in neurological and psychiatric disorders.
Keywords: Alzheimer’s disease; Carbon-11; Glycogen synthase kinase; Positron emission tomography.
Copyright © 2014 Elsevier Inc. All rights reserved.