Purpose: Signal intensity and image contrast differ between postmortem magnetic resonance (PMMR) images and images acquired from the living body. We sought to achieve sufficient fat suppression with short-tau inversion recovery (STIR) PMMR imaging by optimizing inversion time (TI).
Material and methods: We subjected 37 deceased adult patients to PMMR imaging at 1.5 tesla 8 to 60 hours after confirmation of death and measured T1 values of areas of subcutaneous fat with relaxation time maps. Rectal temperature (RT) measured immediately after PMMR ranged from 6 to 31°C. We used Pearson's correlation coefficient to analyze the relationship between T1 and relaxation time (RT). We compared STIR images from 4 cadavers acquired with a TI commonly used in the living body and another TI calculated from the linear regression of T1 and RT.
Results: T1 values of subcutaneous fat ranged from 89.4 to 182.2 ms. There was a strong, positive, and significant correlation between T1 and RT (r = 0.91, P < 0.0001). The regression expression for the relationship was T1 = 2.6*RT + 90 at a field strength of 1.5T. The subcutaneous fat signal was suppressed more effectively with the optimized TI.
Conclusion: The T1 value of subcutaneous fat in PMMR correlates linearly with body temperature. Using this correlation to determine TI, fat suppression with PMMR STIR imaging can be easily improved.