The absence of all or part of one X chromosome in female humans causes Turner's syndrome (TS), providing a unique "knockout model" to investigate the role of the X chromosome in neuroanatomy and cognition. Previous studies have demonstrated TS-associated brain differences; however, it remains largely unknown 1) how the brain structures are affected by the type of X chromosome loss and 2) how X chromosome loss influences the brain-cognition relationship. Here, we addressed these by investigating gray matter morphology and white matter connectivity using a multimodal MRI dataset from 34 adolescent TS patients (13 mosaic and 21 nonmosaic) and 21 controls. Intriguingly, the 2 TS groups exhibited significant differences in surface area in the right angular gyrus and in white matter integrity of the left tapetum of corpus callosum; these data support a link between these brain phenotypes and the type of X chromosome loss in TS. We further showed that the X chromosome modulates specific brain-cognition relationships: thickness and surface area in multiple cortical regions are positively correlated with working-memory performance in controls but negatively in TS. These findings provide novel insights into the X chromosome effect on neuroanatomical and cognitive phenotypes and highlight the role of genetic factors in brain-cognition relationships.
Keywords: Turner's syndrome; diffusion tensor imaging (DTI); gray matter morphology; magnetic resonance imaging (MRI); the X chromosome; white matter connectivity.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].